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E R R A T A 

NACA TN No. 932 
THE NUMERICAL SOLUTION OF COMPRESSIBLE FLUID FLOW PROBLEMS 

By Howard W. Emmonu 

Page 12, line 16:  Change 

May 19 44 

s tagnat 1 on _ 

s —s 

S-9, 

to read 
stagnation = e 

Page 16, paragraph 4, line 9:  Change M . . . upper leTt of 
each net point . , ."to read "... upper right of each 

net point . . ," 

Page 20, equation 25, first part of second line:  Change 

-U>s'(ln p/p0)  to read  -^'e ' ( In p/pQL 

3H rage   25,   line   14:      The   sentence   "The   balanced   case   is   impor- 
tant   since   it   insures   zero   rotation   for   the   adiabatic   flow 
of   a   gas   from  a   lirge   region   of   aero   velocity   even   though 
the   temperature   is   not   uniform   there,"   is   incorrect.      It 
can   he   shown   that 

2u, = nl  ÜSJLEL 

for   flow   from   %  reservoir   of   nonuniform   teraperatura     T0. 

/„        X n, dT -     do Page   26,    equation (39c) :      Change      c„   -y-   -  *   -—- 

dT   -dp 

to read 

rage line 7:  Change  q cr  critical velocity - •—— a; 

to read  Q„_  critical velocity =;<•—-— a
2 

• c r \y + 1 

7 - 1   a 

y  -t- 1 Hb 

Vr 

Page   29,    equation   (49):      Change      AxY   ....    for   any   func- 

tion     cp   (X,Y),      to   read     £xv   ....   for   any   function    9 x.y. 

rage 29, sentence following equation (54):  Change  "equation 

i 
(48) follows."  to read  "equation (49) follows." 

RESTRICTED 
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ITAT101IAL  ADVISORY   COMMITTEE FOR  AERONAUTICS 

TECHNICAL  NOTE NO.   932 

THE  NUMERICAL   SOLUTION   OF   COMPRESSIBLE FLUID   FLOW  PROBLEMS 

By Howard  W.   Emm*ns 

SUMMARY 

Numerical methods have been developed for obtaining 
the steady, adiabatic flow field of a frictionless, per- 
fect ga3 about arbitrary two—dimensional bodies.  The 
solutions include the subsonic velocity regions, the super- 
sonic velocity regions, and the transition compression 
shocks, if required,  Furthermore, the rotational motion 
and antropy changes following shocks are taken into ac- 
count.  Z:;ten3ive use is made of the relaxation method. 

In this report the details of the methods of solution 
are emphasized ao as to permit others to solve similar 
problems.  Solutions already obtained are mentioned only 
by way of illustrating the possibilities of the methods 
described. 

The methods can be applied directly to wind tunnel 
and free air tests of arbitrary airfoil shapes at sub- 
sonic, sonic, and supersonic speeds. 

INTRODUCTION 

The knowledge of the flow of incompressible fluids 
bodies, especially airfoil shapes, has been great; 

.ced "oy the interpretation of good experimental rs— 
about 
advan 
suits 
succes 
results hr.vs come from 
sional irrotational flow 

iy 

in tho light of theoretical predictions.  The first 
sful, easiest, and most widely useful theoretical 
. •, * a Considerat ion of the two—dimen— 

of an incompressible perfect fluid. 

The knowledge of the flew of compressible fluids 
has made good progress in exactly the same way for two 
widely separated conditions,  First, linearization and 
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ond, the method of character— 
of light on completely 
al difficulties have to date 
theoretical results to many 
subsonic and supersonic 
Chaplygin, Ringleb, and 

and 3) have obtained a few 
involving subsonic and super— 
yer, Taylor, and Sortier (ref- 
tudied in a crude approximate 
ic velocity in a nozzle.  None 
a is able to fit arbitrary 
ly incapable of predicting 
nd shape of compression shocks, 

en sr. 
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7 ar. 
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1 adi 
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near 

ocks are present in a solution, the asurap— 
tationality of the flow of a compressible 
general, no longer correct.  Special forms 

ion describing the rotational motion of a 
n discussed by Friedrichs and Crocco (ref— 
d 8).  A consideration of the complexity of 
ons together with the almost insurmountable 
ifficulties encountered .in attempting solu— 
abatic, frictionless, irrotational, shock— 
l:os it obvious that analytical solutions of 
velocity problems are not likely ti be found 
future. 

A r.cv, rather general idea was introduce 
numerical solution of difficult problems duri 
nineteen thirties. H.. V, Southwell's relaxat 
(references 9, 10, ll) permits the solution 0 
of the flow of incompressibla, perfect fluids 
ease, and is readily adapted to the solution 
problems of adabatic, f r ict ion.less (not neces 
irrotational) flow. The relaxation method is 
ly applicable to supersonic velocity regions, 
ternative procedure based upon the use of the 
difference equations has been worked out. PI 
fitting together of tho subsonic and superson 
adjusting their shape and size with comprcssi 
if necessary, is accomplished by a combinatio 

d into the 
ng the 
ion method 
f problems 
with great 

of subsonic 
sar ily 
not direct- 

but an al— 
finite 

nally, the 
ic regions , 
on shocks, 
n of methods . 

This investigation, conducted at tho Harvard University 
was sponsored by, and conducted with financial assistance 
from, tho National Advisory Committee for Aoronautics. 
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6 lntti.ee spacing in eonput.it ions 

A change of a quantity or the Laplace operator 

CD Scalar variable 

\|/ streaa function 

>' o constant 

t' dlmensi onles s stream inunction 

r\ streno function for incompr s ssible fluid 

I velocity potential for incompressible fluid 

P mass density 

M rate of rotation 

Subscript o 

i   incompressible fluid 

x.y.t.M,   denote differentiation in the corresponding 
direction 

denote differentiation with respect to 
dinensionless coordinate in the 
physical plane 

1,2,3,4,0   lattice points 

f   i8entropic stagnation conditions for undisturbed 
stroam 

RELAXATION SOLUTION. OF TH3 FLOW OF INCOMPRESSIBLE FLUIDS 

"ho two—dimensional irrotatioaal flow of an incom- 
pressible fluid is doscribod by oither of the oquations 

AT] = 0 (T] is the stream function)      a) 

i| s 0 (5 ie the velocity potential)    b) 
(1) 
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If   b; 
point 

some process, 
equ 

s, values of  11  were attached to each 

n 
ation (4) would immediately show whether or 

ot they'approximated a solution of Laplace's equation 
If the attached values do not satisfy U), they define 
a residual Q  at each point. 

+ Tls T|, + TU _ 4T|Q = q( (5) 
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1 from any given point to the surround- 
rocess is physically equivalent to ro- 
rom a tension net; hence the tern 
"  Figure 2 is called by Southwell the 

It gives at a glance the influence 
e effect of changes of  Tj  on the 
ation process is followed step by step 

Q,  are zero and the boundary values 
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To calculate the flow about an airfoil, take the 
following atepa: 

1. Draw the airfoil and flow region to a scale 
nuch that the distance between net points, as  6  in 
figure 1, is about li inches.  Do not use too many 
points at the start.  Tnose snown in figure 1 are ade- 
quate.  Tor greater accuracy more points can he added 
in Important regions, as near tue airfoil, during the 
course of solution. 

2. With the boundary conditions in mind, guess 
values of  n  at tne net points, and compute the residual«, 
To aid the accuracy of guessing, a freehand sketch of 
streamlines and potential lines is sometimes useful. 
Use whole values of n ranging from say 0 to 1000. It 
is convenient to record at each net point values as in- 
dicated in figure 3. 

etc. 

T} guess 

&r\ a 

etc. 

^final nflnal 

Tigure 3 

3. The residuals are relaxed, each time recording at 
each point the change in T\     and the resultant  Q.  In 
this way the points at wnich the residual is largest can 
be spotted at a glance and relaxed next.  Change r\     by 
simple whole numbers only. 

4. After all  Q,  have values between ±2  (move 
decimal to position of desired accuracy) add changes of 
n  to get the final value (fig. 3) at each point. 

5. Recompute  Q  by equation (5) to locate any com- 
putation errors.  Relax resultant  Q,  if any. 
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6. If the solution is not accurate enough, additional 
points arc added where noeded.  In figure 1 many more 
points arc needed near the airfoil.  The process 1 
through 5 is repeated as previously mentioned. 

7, The required results — for example, pressure 
distribution — can he computed by use of equations (2) 
and Bernoulli's equation.  The accuracy of all the re- 
sults can be at any tine improved by adding more points 
to the net used in the solutions. 

The boundary values as given will he information 
about values of the desired function or values of the 
normal, derivative of the desired function as in equa- 
tion (o).  When the physical boundary runs between net 
points, it is sufficiently accurate to set values at the 
uearcst net points by linear interpolation or oxtrapola— 
t ion. 

As v/ill be described in a following section, the 
flow of a compressible fluid is best accomplished by 
making use of the streamlines and potential lines of the 
irrotational flow of an incompressible fluid about the 
same body. 

Differential Equations and Boundary Conditions 

for the Adiabatic Flow of a Fr ict ionloss Porfect G-as 

The  motion   **f   a   compressible   fluid   is   described by 
three  laws   of   nature:   namely,   conservation   of  matter, 
energy,   and momentum   together  with   the properties   of 
the  fluid  and  the  boundary  conditions   of   the  particular 
problem  on hand.     The   second  law  of   thermodynamics  makes 
a restriction   on  the   type   of   discontinuity  (shock wave) 
that   can  occur. 

In   the   following,   the  fluid will   be   taken   as   a 
frictionless,   perfect   gas.     The   flow  will   be   assumed 
adiabatic.     Thus   in  the  absence   of   compression   shocks KfLiitsI 

the  flow  will   be   isentropic.     The   changes   of   entropy  in                    * 
the  compression  shocks   will  be   considered  in detail  later. 

If,   in   addition   to   the 'assumption   of   an   adiabatic 
flow,   steady   flow   is   assumed,   the   energy   equation   states 
that 

h0  =  h + ^                                            (6) 
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is constant along a streamline but may differ in an arbi- 
trary way from one streamline to the next.  For all caees 
assuming uniform conditions at infinity, the stagnation 
enthalpy,  h0,  is constant everywhere.  This assumption 

is usually adequate but, if not, it would not materially 
complicate the method of solution. 

The continuity equation in rectangular, x, y coordi- 
nates i 8 

9x    3y 
(7) 

This equation permits the introduction of the st/eam 
function  ^ defined by 

pu = 
3y   vy' 

pv 
3x *, (8) 

The substance of the equations of motion for an adiabatlc, 
frictionleBs flow are summed up in the equations ^.see 
appendix 1 for derivation) 

co- I (M   . |SL > 
3x 3y^ 

1 f_p 3a 
2 \R 3^ 

(9) 

where the entropy  s  and the stagnation enthalpy h0 
are constant along a streamline.  Generally,  a  and 
h0  are both constant everywhere from which the flsv is 

seen to be irrotational. 

aquations (8) substituted into equation (9) yields 
the fundamental differential equation to be solved. 

ÖX Vp  9x J      ciy" *v J 
= -2(0 (IDs) 

The following form of equation (lO) is generally more 
convenient for numerical solution. 

'* xx + ii       - \|/x   (lap),  - ii      ( tnp)y  +   2<up =0       (10*) 



:-*?'.*: :5- 
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The "boundary conditions, as for incompressible fluids, 
are commonly taken as uniform properties and velocity at 
infinity and a certain few streamlines specified by the 
surfaces of "bodies (airfoil) and flow passages (wind 
tunnel). 

It was noted in the 
tion of the flow of an i 
airfoil by the relaxatio 
tion to the boundary con 
not fall directly on the 
compressible fluid, espe 
involves so many difficu 
avoid the boundary condi 
done by using as a coord 
(T] = const) and potentia 
rotational flow of a per 
the same airfoil. ?lgur 
plane and the simple str 
in the transformed plane 
coordinates can be antic 
fluid streamlines will n 
incompressible streamlin 
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ncompressible flui 
n method required 
ditions when the n 
boundary Itself, 
cially near the sp 
lties that it is d 
tion trouble. Thi 
inate system the s 
1 lines ( £ = const 
feet incompreasibl 
e 4 shows the airf 
alght line boundar 

Another advanta 
ipated since the c 
ot deviate too gre 
ee (T| const) . 

that the solu- 
d about an 
special atten- 
et points did 
The flow of a 
eed of sound, 
esirable to 
s is easily 
treamlines 
) for the ir- 
e fluid about 
oil in the real 
ies required 
ge öf these 
ompressible 
atiy from tho 

for 
This transformation of coordinates is conformal and 
any conformal transformation equations (10 a,b) 

become (see appendix 3) 

n 
.,\ 

®+*r( 
Dau) 

u-l 
(14a) 

or 

n M» T.Ti - ^ (lap >£ - Mi. (lap) D ID 

<U' 
0  (14b) 

The differential equation for ty     has the same formal 
appearar.ee in the physical plane and in the transformed 
plane (since for nearly all work the  u) term is negli- 
gibly).  An important difference appears in the determi- 
nation of the compressible fluid density during the 
course of the solution.  In place of equation (12), the 
following equation is uBed (see appendix 3): 

pq - ll(* 
D V 

+ ^ 
*    J 

(15) 
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procedures, the relative excellence of which depends 
upon the relative magnitude of the various terms.  The 
following method has "been found very satisfactory. 

The equation (14b) for the stream function ty    is 
put into a dimensionless form which permits ready change 
of scales.  Let 

M» , po aQ D M/0 M/' (17) 

where ^0  is a dimenBionless constant to he chose» by 

the computer.  By equations (14 a,b) 

a (£°.   MLLV -L.(£fl. *£-Y= TfVp    H J    ati Vp    aw 
2  Dm 

lo  qi   ^o 

or 

\|/'j| + ^TJT,'- *'j (la p/p0)|-^ ti <la P/PO^TI 

+      2DaiP 

*o   «H*  Po ^o 

Equation   (15)   is  also  altered   to 

.) 

(18) 

b) 

pq .      , s i a. l/a 

Poa 
0"0 

(19) 

The  equation  (l8h)   for  the   stream function     ty'    is put 
into   finite  difference   form  as   follows: 

^ 'a^ + ^A^Vo.-^-*'^ P^" -;n  P/P-^) 

-    foV ^!.» ) ( tn  P/P0 4-- tn P/Poa)^  '»P»       , Qo       (20) 
ao<u" Pc 

and equation (19) hecomes 
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oose  the  de3ired  boundary   conditions   for   %he 
"his   is   not   as   easy  a matter  as   for   incom- 
fluida  where   necessary  and   sufficient   condi- 
the   existence   of   a  solution  of  Laplace's 
re  known.     For   the hyperbolic   channel,   it   was 
specify:   symmetry about   the  x and  y  axis, 

operties   and   zero velocity for     x —> i33,   ir~ 
notion  throughout,     M     at   the  center   of  the 
=  y  =  0.     For  physical  reasons,   the  solution 

oblem   is   known  to  be unique.     Kotice  that   it 
e  to  specify,   for   example,   the  total  flow 
e passage  in  place  of   some  of   the   aforementioned 
hen   the  solution  would  not   be unique. 

4.   *7ith     the   boundary   conditions   in mind,   guess  values 
of   the  strean  function    \|>' .      In  the  particular   case  of 
the  hyperbolic   channel   shown   in  figure  8,     M     was   chosen 

pq 
as 0.35 at the center.  At this point, therefore,    

poao 
Vith  6  chosen as 
= 0, n = 0.15)-i|/ '(0.0) 

To avoid continual 

=»   0.568 
0.15,    '4 
3 \l' rt ' 5   = 

by  computation  figure  14, 
o   =  25   =   0.30.     Hence   ty'(I 

pq 0.568 

o   o <u *. 
=   0.284, 

use  of   snail  decimals,   1000  times   this   number   is   recorded 
in  figure   6.     The remaining   \J/ '     values   along      £ =  0    were 
set   by using   ty'     approximately proportional   to    \J/'     for 
a  solution  already  obtained  for     M     center  =   0.80.     A good 
alternative procedure  would  have  been   to   assign     q/q^ 
constant   along      I =  0     (see   equation  (16)).     Having  an 
approximate    ty'      on  the   boundary     n  =   0,6,     it   i3   constant 
for  all     t, .     For    |      large,    ^'      is   divided  proportional 
to     T).     Finally,   all remaining values   of    \V'      are put   in 
by  guess . 

5.   Compute  the auxiliary  quantities   and  the residuals by 
equation   (20),     The various  values   are  arranged  around  the 
point,   as   in  figure  7,     Note  that   the   ^£'(tn   p/p0)     term 
has   been     omitted.     This   is  possible   only because   it   is 
of   insignificant  magnitude   in the  present   case. 
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Treatment of Supersonic Flows, Especially Supersonic 

Hegions in an Otherwise Subsonic Tlow 

As the speed of sound is approached by the fluid, 
the density-mass velocity relation approaches a vertical 
tangent as in computation figure 12. In this region the 
relaxation process is still able to yield a solution 'but 
the effect of changes in  ty'(or In p/p )  must be watched 

very closely so as to avoid making residuals worse rather 
than better. 

The relaxation process, the removal of residuals by 
arbitrary changes of the dependent variable, becomes 
confusing for supersonic velocities.  The following 
tentative method of solution has been found adequate for 
the problems solved to date. 

The relation useful near the boundaries, equation 
(16), is approximately correct throughout  the flow field 
and suggests working with  q/qi  as variable in place of 
of  In p. As s"'-own in appendix 4, equation (lO) becomes 

Hi  +*T1 (in ± 
, f  r 

-4/ £ (lnp)| 

*r 
233^1 

<i3 

l/B 

= 0 (22) 

This equation would be no improvement ovor equation (lO), 
except that the last three terms are generally very 
small.  The first two terns then give 

cm 
-[hi ATI (23) 

If dimonsionlees variables are again introduced through 

\|f = p  a D^o^i/'  and  q* = -i—       (24) 

there results 
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«1 
v U \V    '    (In   q*)T|     -1/2   ^ 

V. >- V ||        - J . 

-M;.»(ln  p/Po)     + 2D M  P j   =   0 
5 ac*o  Po   *i 

and  approximately 

q*  =  C( | )o 
dr, 

(25) 

(26) 

-•i 

a 

I 

A solution obtained with q* constant, if such that the 
last three terms of equation (25) are really negligible, 
can be checked most easily by noting the value of 
U' '){•>;  which is the residual in the equation (see ap- 

pendix 4) 

<V}u + V (In a») W\ <V>r, (In q*)r. = 0 T'T, (27) 

A solution is obtained in the following steps. 

1. Lay out the problem as for a subsonic velocity 
solution following steps 1, 2, and 3» 

2. On each I     constant line choose a value of 
q* = constant.  By means of confutation figure 14 determine 
the value of ^  at each net point  (^|3  if not negli- 
gible can bo estimated later and corrected for).  Inte- 
grate v f|  to find i'  and to check the boundary condition 
(when a streamline is givon as at the surface of an air- 
foil or passage).  If ^  does not satisfy the boundary 
condition, a now value of  q*  is chosen and the compu- 
tation repeated until it does. 

3. The solution to this point has been obtained as 
a one-dimensional solution along velocity potential 
linos, each lino being solved independent of the others. 
The residuals (of the ^ p. ) can now be avaluated from equa- 

tion (27) by computing C^'^f since the other two terms 

are zero. 
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4.   Hake   adjustments   to   eliminate   residuals.    Ho definite 
instructions   are   given   at   this   point   because,   to   date, 
the residuals.'have been   so   very   small   that   almost   no   adjust- 
ment   lirs   been required.     Figure   9   shows   the   subsonic- 
supersonic   transition   in   a hyperbolic   nozzle   obtained   as 
outlined  previously.      This   corresponds   to   the   solution 
first   obtained by   a   series   expansion  by Meyer   (see  refer- 
ence   <!•) . 

Solutions with   Compression  Shocks 

Since   many  practical   gas   dynamics   problems   start   wit] 

?! 

gas 01 
not r.c 
all th 
needed 
t inv.it 
p r c s s u 
pros a i 
known 
Conpre 
genera 
first 
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with a 
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normal 
hence 
comput 
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stream 

uniform  properties   and  velocity,   it   is   generally 
cossary  to   consider  variations   in   entropy.     Thus 
c   computation   curves   with   varying   entropy   are   not 
.     As   soon   as   supersonic   regions   appear,   discon— 
ics   may  occur   in which   the   velocity   drops   and   the 
re   risos   over   an   extremely   short   distance.     Corn- 
on   shock,   as   these phenomena are called,   is   well 
in   the  literature   (see,   for   example,   reference   12). 
cnion   shocks   give   rise   to   several   effects   not 
lly   included   in   fluid mechanics   solutions.      In   the 
placo,   a   compression   shock   involves   the   dissipation 
hanical   energy  resulting   in   an   increase   of   entropy 

ut at ion Lg. 15) the   entropy   rise   increases 
n   increase   of   the   supersonic  velocity   of   the   fluid 
of   the  shock  measured relative   to   the   shock.     If 
ock   is   oblique   to   tho   approaching  stroam,   the 

component   of   velocity   suffers   a  suddon   change   and 
the   stream   turns   abruptly   through   some   angle   (sec 
ation   fig.   16).      Tho   entropy   change   through   a 
nary   shock   is   thus   dependent  upon  tho   initial 

I.'nch  number   and   tho   shock   obliquity. 

In   the   stream  following  a   shock   tho  entropy  remains 
constant   along  each   stroamlino,   as   shown   in   appendix  1, 
but   now   the   ontropy   is   not   constant   throughout   tho   region. 
Thus   in  the   course   of   tho  numerical   scIv: • on   carried   out 
exactly   as   indicatod   in   tho  procoding   r>>. •_ r ions ,   it   is 
necessary   to   look  up  values   on   tho   computation   curves   at 
the   entropy   appropriate   to   tho   streamline  passing  through 
tho  particular  point   in   quostion.     Thus   each   time   a   com- 
putation   curve J5v s t   be   used,   the   curr.nt   value   of     \J/     at 
that   point   must   bo   observed  and   the   v;i?uo   of.   the   ontropy 
appropriate   to   it   must   be  used.     AS   the   solution  pro- 
gresses   and   the  values   of     ^     at   points   change,   correc- 
tion  for   the  attendant   changes   of   the   entropy  mu3t   be 
made  periodically. 
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frictic 
Thus ir. 
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to that along a given streamline the rotation is 
stant tut 1B proportional to the pressure (hc is 
onstant everywhere by the assumptions of adiahatic, 
nless flow and uniform conditions at infinity). 
a region of flow following a shock, equation (2C) 

, using equation (9). 

\^l .Olg'+^'+^'.rV- <*: \l>3! ) (lnp/p0l- In p/ P?y) 

f.-,   ' 1 )(ln   p/p04 -In c/pos) 
4 

, u9 t 

11 
2,1; 

£JE. 

Po?o 

VR/4 yays 
= 0 

(28) 

(horo  —8' •  ha? "beon evaluated along a constant I      line, 
d'i' 

and .PP. 

P n 
o- o 

is given on computation figures 23 and 24. 
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final difficulty to he met 
merely a "boundary conditi 
ion and a sub;:r.ic region, 
\:ith a shock, it is p09sib 
ion beyond the position of 
tance) were it not present 
ion likewise. Thus the sh 
'.: and forth until it has a 
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is the fact that the 
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Crenerally, given a 
le to extend the super— 
the shock (at least a 
and to extend the sub— 

ock is a v/ave which 
magnitude which perr.its 

on in the flow.  The 
"extended" and the 

ermines the stability 
shock waves are fre— 

Actual solutions containing shocks are obtained in 
the-following way: 
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1. A problem Is solved as previouely described, In- 
cluding regions of supersonic velocity. 

2. A shock is arbitrarily placed in some location 
in tho supersonic region.  The more information, experi- 
mental or «therwise, about the probable location and 
shape of the shock wave, tho better. 

3. With this shock fixed the flow in the region 
following the shock is determined by the shock boundary 
conditions of stream function and entropy distribution. 

4. On completing this solution by relaxation a check 
at tho shock will generally show that the streamline 
direction fallowing the shock does not agree with the 
shock obliquity assuned.  The obliquity is changed to get 
agreement of direction of the streamlines and step 3 is 
repeated. 

5. A few repetitions suffice to gat a sufficiently 
accurate solution. 

A solution with a shocK in the hyperbolic passage 
obtained in this manner is shown in figure 10. 

CONCLUSIONS 

Numerical methods for obtaining solutions of the 
two-dimensional, adiabatic flow of frictionless, perfect 
gases is described in detail and illustrated by solu- 
tions of the flow of air through a hyperbolic passage 
at widely varying velocities. 

The relaxation method applied to goneral passages 
or airfoil shapes can readily supply all data desired 
for the flow of incompressible fluids.  These solutions 
can bo corrected for compressibility effects up to the 
appearance of supersonic regions by use of the same method. 

After supersonic regions appear, other methods de- 
scribed permit the further correction of tfco flow for 
these effects.  Finally» solutions with shocks, including 
all of the attendant rotation an I entropy chango effects, 
are obtained by a step-by-step process. 

All of tho methods described have one enormous ad- 
vantage over analytical methods of eolutlm of these 
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problems.      They permit   the   computer   to   use   all   of   the 
facts   he   irr.ows   about   the  phenomena   throughout   the   corn- 
put at ions . 

II any   curves   presenting  the   properties   of   air   as   re- 
quired   for   these   computations   are   appended, 

Earvr.ru  University, 
Ca.v.bridge,   Kass.,   March   1,   1944. 

APPSI'TDIX   I 

ROTATIONAL HCTIOJT 

For most fluid mechanics work, the equation of 
motion of the fluid can be replaced by the fact that the 
velocity distribution is irrotational.  For the super- 
sonic flow of compressible fluids in which shock waves 
occur, the velocity distribution will not be irrotational. 

case of the motion of a eompres- Consider a general case 01 we iaoT,iuu 01 a coa; 
sible, frietionless, perfect gas between the curved 

re 11.  The fluid element rotates 
1 1.    - V^A -TN   «  •«   ^   «. «.*• «.   r,   •"    a »<    V/1« Vif 

streamlines   of   fdgu.v   ...     -„„   ..   _. 
xiB   normal   to   the  paper  at   rate   given  by about   an   a 

2UJ 
on 

(29) 

The  pressure  gradi- 
ent   normal   to   the 
streamlines  must   pro- 
duce     the   centripetal 
acceleration   of   the 
fluid   element;   thus 

(30) 
op 

"as; 
pq' 
r 

Eliminate     r 
( 29)   and   ( 30) 

between 

iXi   =  - 
oq 
dn 

_1_   dp 
pq ~5n 

(31) 

-^ q + -~-* dn 
on 

Figure  11 
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Introduce   the   stagnation   enthalpy 

h0   ,   h   +  ^ (32) 

and the thermodynamic relation 

dh = Tds + 
dp (33) 

and equation (3l) for the rotation of the fluid element 
he comes 

ön j 
t3„,   _    1   !  T    08 

q V     On 
(34) 

$ 

I 

Mow   introduce   the   stream   function     d\l> =   pq dn    and   the 
gas   law     p  =   pRT 

2 a.» JUL. _   o   ^2- 
ö\V a^ (3 5) 

J. n 

gas i 3 
t i on en 
halance 

portant 
flow of 
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roughout the 
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rature is no 
nee is the a 
nditions at 
ywb~ro and 

Thus the 
wave and r6t 

ational motion of a perfect 
ntropy and constant stagna- 
region, or else a delicate 
The Balanced case is im- 

o rotation for the adiabatic 
egion of zero velocity even 
t uniform there.  The case of 
diabatie flow from uniform, 
infinity.  ?or this case  h0 
s  is constant up to the 
flow is irrotational up to 
ational thereafter. 

To find the- distribution of rotation behind the 
shock wave, differentiate equation (32) along a stream- 
line, observing that for adiabatic flow h0  is constant 

everywhere. 

dh 
&• 

+ q ^-i. s 0 (36) 
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Also by the Bernoulli equation 

p  ÖL 

According to equation (33; 

oq 
^L 

= 0 

= 0 

(37) 

(33) 

The entropy remains constant along streamlines 'between 
shocks.  Thus the rotation of the fluid is proportional 
to the pressure along streamlines in regions between 
shocks.  The proportionality constant varies from stream- 
lino to streamline according to the distribution of en- 
tropy between streamlines produced by the shock wave. 

APPSNDIX II 

TH3 COMPUTATION CURV3S 

Most of the curves found useful in computation follow 
fror, these well-known thermodynamic relations for a con- 
stant specific heat, perfect gas. 

RT 

h = c„ T = 

ds = c. 

V - 1 

dl _ Ä 4P ,  Cv « R l£ =c iL-c.4^- (c) 

The conservation of energy for the adiabatic flow 
of a frictionless fluid is 

h + n« a c "-istant along a streamline (40) 
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Introduce   tho   acoustic  velocity  from   (39b) 

ao       To       a' 2 G (41) 

3y  integration   of equatitn   (39c) 

P.   =   o 
iH2    /        \ J_ 8-8, 

2      V^ 1 (42) 

Computation figures 12, 13, and 14 follow immediately. 

3quation (4l) can be rewritten as 

y _ 

W3   (q/a0)' 
(43) 

This relation is independent ef the entropy changes and 
ie given as commutation figure 19. This with computation 
figures 12, 13,  and 14   yields figures 17 and 18.    Again  by   (39c) 

8-dfi     /        \   V     1 
5. = e"    a    '.O.   -1 

p0 VTO y 
=  e "^/i . L=J.fjL.VV~X      (44> 

This equation, together with (42), permits the construc- 
tion of computation figures 20, 21, 23, and 24. 

A general relation for the dynamic pressure i3 ob- 
tained from equations (42) and (43). 

03 V M3 j> 

8-8( 

s 

1 1 + •v-i M3 |> if-: 

(45) 

Since the dynamic pressure is used only te determine 
pressure coefficient a, the computation figure 22 i» plotted 
for only  s-s6 = 0. 
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Tirst   It   is   shown  that 

ai AXYCP=   p- Ü|T1 A*r, <P (49) 

for  any  function     «p (X,Y) 

A.   straightforward  derivation   seems   in  thi6   case   to  be 
simplest: 

cpx  =   «p|  Sx  + «PT,  % (50) 

Repeating  the  process  and  rearranging  terms, 

?xx = <?a 5 x3 + «Pr,r, ^x* + 2^r,   T'X*X + *£  ••xx+ **! ^xx     <5l) 

A   similar   expression  for     'PYY   
wfl9n  added  to   equation  (5l) 

gives 

<pxx + oYY = ^   (ex
3 + ey

3) + ^r.Tj (nx
3+ riy

a) 

+   2 cp^   (Tlxex  +TlYey) + <P$UxX  +   tYY) + 9r,   (TlXX + ^YY)        (52) 

3y  equation   (2)   this  reduces   to 

AXY9"9XX     + 9TY   =    qi3   (CPÜ+   ^ TlT, >  =   *iaA|r,* (53) 

where 

*ia = i'ia + £Y2 = V+ V (54) 

Returning to the physical coordinates  x a XD,  y = YD, 
equation (48) follows. 

Now the conversion of the differential equation (lOa) 
for the stream function,  ^,  from  x,y to il\     coordinates 
follows immediately from the identity 

5x\j) 3xy 3y\p »y/ 2 l  p   p      pj 

Thus equation (10a) 





HACA  TN  Ho.   932 31 

A  sometimes  more  useful   form   of   equation  (22) 
follov/a   by  noting  that   the   last   three  terras   are   generally 
very  snail   and  that   the  velocity     q     is   related  to  the 
"ii    gradient   by  the   computation   curves.     Differentiate 
the  first   tv/o   terms   of   equation  (22)   and neglect   the  last 
three   terns. 

<v ee <V„ In + ^n     In *i; =   0 (58) 
r\r\ 

This   "becor.es   equation  (27),   if  dimens ionless   variables 
are   introduced.     In  the  use   of   equation  (58)»   the 
gradier.';   is   taken  a3    \l/^     th»    ^£     term  being  very snail. 

REFSHESCES 

1. Chaplygin, A.:  Gas Jets.  HACA TM Ho. 1063, 1544. 

2. Einrieb, F.:  Exakte Losungen der Differential- 
gleichungen einer adiabatischen Gasströmung. 
S.f.a.II.Ii., vol. 20, 1940, pp. 185-198, 

3. Tollnicn, M. :     Zum Übergang von Untorschall in- 
"bcrschallstromungen.  Z.f.a.M.H., vol. 17, no. 2, 
1937, pp. 117-136. 

4. Ilcycr , ?.:  über zweidimensionale Bewegungsvorgänge 
in einem Gas, das mit Oberschallgoschwindigkeit 
otrent,  rorschungsarboiten dos Ingenieurwesens, 
52, 1908. 

5. Taylor, G. l.'i     The Flow of Air at High Speeds Past 
Curved Surfaces.  2.&K. Ho. 1381, British A.R.C., 
„w o *•> « 

6. Gört lor,   E.:     Zum Übergang von Üatorachall  —   zu 
Überschallgeschwindigkeiten   in Düson.     Z.f.a.M.H. 
vol.   19,   1939,   pp.   325—337;   and  GasStrömungen 
mit  Übergang von  Unterschall  -  zu überschau- 
tes ch-./indigkeiten.     Z.f.a.K.K.,   vol.   20,   1940, 
pp.   254—262. 

7. Friedrichs, K. 0.:     Fluid Dynamics   (mimeographed  notes). 
Advanced  instruction   and research   in Mechanics, 
Broun Univ.,   1941. 



MAC A   TIT  Ho.   932 32 

8. Crosoo,   L . :     Eins  neue   Ströcungsfunction   für   dio 
L-i'- or s chung  der   Gase  mit  Rotations.     Z. f. a. U.K. 
vo:..   17,   1937,   pp.    1-7. 

9. Southvcll,   R.   V.:     Relaxation   Methods   in  Engineering 
Science.     Oxford   at   the   Clarendon  Press,   1940. 

10.   Christophcrson   and  Southwell:     Relaxation  Methods 
applied   to   Engineering Problems,      Ill-Problems 
involving  Two   Independent   Variables.     Pvoc.   Roy. 
Soc,   vol.   163,   no.   934,   1938,   pp.   317-350. 

11. £i...-.i <j . I      -• • w The  numerical   Solution   of   Heat   Con- 
duction  Problena.      Trans.   A.3.K.S.,   vol.   65,   no.  6, 
12-13 ,   T9.   607-515. 

Taylor,   C-.    I.   and  Haccoll,   J,   W.:      The  Mechanics   of 
Cor.-n-essiblo  Fluids.     Division K,   vol.    Ill, 
Aerodynamic   Theory,   W.   F.   Dur and,  ed.,   J.   Springer 
C-crl in),  1934. 



HAOA  TN Ho.   932 Fig.   4 

x.y plane 

"7 4/ 7 Pi ane 

u 
— -It -i- „,1 J "l 

I 1 1 u ( 
L 1. 

Fig. 4. 





HAOA TH no. 933 Symmetrical    Flow  in   Hyperbolic   Channel Flg. 3u 

Mach  Number at Center   of   Passaqe   M =835 

HIJT Final   Value of Stream   Function 

1 
(Key on  figure 6 b) 

t?r\ r** Uli* /£" u« /w [ un 
•bU 

SuT S' 

174        TO 
Mt 

is 

BO 

A c, (S i.ut /<* it« ^J IX k 
.H-O 

a     ,30 

BJ  in 
-;l  «i1   -    •! 

.Jl   .    0 

-13 .IT 
-t 

-r 
.) 
.2. 
.1 

«e    ill 

"1      110 

-ll.il  -   0 
»*       MO 

-it *IT -    *l 
*}      til 

"?n Sn, t\-K1 /toT 1.0« (S «T 
•OU 

ft«          Ut 
-( 

-n»u »•  -1 

0 

SU        us 
•I 
-1 

SI 

•10.1 . -1 

-1 
-7 
ri 

«a     is« 
-J        JTO 

m    «k 

-i 
0 

•I 
Ilk  »   «3 

»1 

HI    •   *l 
-a >n  • 'i 
-'3 »11   « »1 

5kT 

-e.u 

.1 
-1 

0 

0 
-t 

• »1 

/<*r I.M /mt urn /£T ,-,,t7, .to -4.1, .    -j 

•s 

H 
-> 

.7 -:f 

1«       Ul -fJL  . -i 
-4 
-1 

0 -( 
-J 
»1 •     ••! 

W       uk 
-I    >tk 
-1 
»1 

a) 

»7 •k'7   « -1 

JV 
M 

-1*5 

»i 
0 

>      0 
•  «i 
.    0 

no 
Uk 

r\ & J.MO /*r Ml & ,.*7 

iff 

SU      Mt 
Ml 
tu 
5M 

ä1    W 

«k 

ftl     U» 
Ul 

sv 
04 

Q Figure  6a. 5 0 



MACA  "K  Ho.   932 

Key 

r  -(»*,    Af-r?/^ 

frV f«. 

Fig.   6b 

' :*o I osj- MO £ IS* (HU 7«f 

»3 

1—    ill INI      irt 

ml 

»Si 

/*• t»J ,'SM »7 tf .1« fa •'«.. 
-7-Ü   • 

~l.il    J 

,1 

• 1 

- H 
-5 
•1 
1 

1«      ill -5-1 • 

-V« • 

»3 
0 

-1 
-1 

0 
-I 
-I 
-2 

tu 
-A 

IV 
-H 

•I 
0 

-1 
-2 

-fc.H -    -2 

III     uo 

H10      SM 

-5<3» 

-J 
-* 
*o 
-1 

-2 
-i 

US      11 

JW      US 

•rST •n< ^!TT /7| ^ • TU ^5T .M *> 
-l.i(    * -i 

• r 
• J 
• i 
0 

-i 
-3 

-7.1    . -5 

-3 

-O 
-1 

1*» -/•2 •   -5 
-7 

-i 

-2 
-J 

5*T     i« 0. / • 

-1*1   > 

.1 

-1 
-3 
.1 
0 
0 

£ll     "• <* 

-1*k    - 
0 

•2 
no -1*1   • 

-VI - 
-1 

0 
m -1 »2 -   *l 

-1*2 -   0 

w S»7 
O 

-T-k    ' *{ 3 
•l't    • •2 .1; 

/^5" .»IT /««, .JIO /AT .Trf ^ HI. 0 

-5--I s 

-r 
'i 
-i 

-i 

TO     ,k -|.|   . 0 

-t 
0 

.1 

-2 

'«1 -|.|.       o 
-2 
-3 
.1 

0 
-|.|«      o 

2lj    n 0*1    • 

-w    • 

0 
-1 
0 

!2J   * st 

0»1 « 

-t"l   - 

-3 

•1 
0 

»1 

-•J.I   • 
-1*1   • 
->!    - 

-z 
-3 

tH »w ut 

/<ST ;*r (S .«w rf? )•"* (ST 'V* 
fli         UT fil «1 «1     * a]    n 

a; 
»1 

Htt •«i ya 

.45 Figure 6b. .90 



:'ACA  TU No.   332 Fig.  6c 

£ .H* /£ .Ml £ ..Mff 

<0W       T7 

m 

in *3 

& '" .<S .Uf •'^p .ffT 

.1.1 . 

-I'l  = 

.3 
9 

-3 
• i 

• 1 .1   .     .  i 

-3 
* i 

-i'i •     % 

»a    «» 

w    it* 

0.0      »     0 

.,.0      « «1 
m 

>V        111 

rf«" ,fcU ,iIT rv> /Ä" HI 

0*-l    • 

•3 
•1 

• 1 
•1 

23j   a 

31< 

• l*-i •   'i 
0 

-l 
-1 »1    '     0 

<J»0        •   0 
•3 

-1-0      « -i 

5«       3T 

HI 

^ U7 /Sf .»IT /itf\ ,111 

•I'l   • 0 mj    a 

510 

»l»0    •    «-I 

0*«   »     0 

MO 

0.0    -     0 
.1 

Oil 

f 

^ ,w /S-, f« ^, s 
flj        4T oj      JO 

»0 "» UJ 

.05 .20       Figure 6c.      1.35 









n*. i2 
^{•TT-'a     'JJ-T   .2T/T   -3   du.Mt-'M 







SAC A   TN   No.   '<:,?. 

:;:;*;::_: :::;t:t":: ::,.*.:: :».*:,;-•        .: .   :      ;     :  __ •   . ! .     . . !•••-•]•••• 

Fig.   15 

Computation Curve4 

, trtrirrbrer o fvj-- W«3TnfcrAu-qfsr 

Hp^i^^^ ^p^p^i^te 
:• ^j.^400    i    i--:-j; 

~~^^F Spec i fie. Entror: /. increase- 
:r::;;:;:<- 

4,ym 
!iM05Sk£i^s.r^]7C:"r -^_i L:. 4c.;J .:;;JX 









Flg.   19 

n (\J 

 r —r 
W ?m qsid WM SOW 

i —- 
...:... 

•••-T'" 

  -'- ....           .  r    ; 
: i  :• 

j          1 '-•  i -\-- ... '.... ..;.... ...... : ._.|_ 
T 

.  !.'::->.  ' j--;• ....;.... -~- •-•- • ...;.... ........ ._;_... 

..">i i......... 
i  ^  i    . 

....      j ......... _.;.... ... :.. _:.:.. ....:... -        : 
•   : c 

•   i .• 

.   .; 

.! !    *^U _.. —j-- 
. ! :_.;.... ..:.. ....... ........ 

-;•- 

! .... ^ ........ 
-•;•-   

i 

r 

...:... i..:... 
!      i      ; •  - 

:..;;_. ... : 
--V- -   •• ! 1 - 

...;_.. - -•— ... |........ 
: "•- 

1   : 
'      i      : —!— ~..;_. 

1                  1 

•! ! . . i: . !   . 
...       ^               ^.....; 

. x:.: 

!• • 
Tv •    *:'.: 

I   ;   [.. :. •-!-f-|-- 
. ..; ... 

 _j 

•   i " i * i :- c 
. LI...:. . 

i 
•   i   ; 

.   1   ; 
....;_. -.;.... -- - 

: 
----- ..,!... 

;N 

-h- 
i 

'•       i 
...:_. -4- • -+---   -•••- 

...:.:..|>S- 
! 

; _j_. -4 -: • r '. • 

'• 
..:!_. -i- : 

...L ..,.„ 
'V 

•    .    i -A-- »r !"-• 
; :   • 

....j... .._;_. ._._. 
: i 

i    '.s" ! 

-{- .-.:... . •-|— 

....... ...;... ...L. 

......x 
V 

----- ........ ..:.:.... - -T- ....;.... —:-* 
-  r •• - f 

...X ... ......... ...:..'. - 
: 

..... „ ...;..... --•-: 
... .dft 

!|"' 
X - [ 

....:.._ •••••:* 

::Tv 
•;.. 

• -.: • 

V ';   I •':' ; ,;,i.. 

... 
;    \ ._; :   |-; .:!.. •:::iff 

:':   - \r: •. : •   i 
••.!• f 

...:.... -•:•:• ....:__ 
.;    S 

\ :'• 
• :: 

\ ..! :: . ;:•••:• 

: . _... . '••* 

_..;_. 
:   : 

: :- Nu1' .: :! : •;::!;:: •     i : 
-:t. 

•^ 
•:••[•-   ' V'::: j- ..:: i 

• ••••                  ': 

•   u    ':          : : ••• 
...; . .--..i.; •.::!••' "v 

! : 
O     •    : — •:—• 

••• ! • S . ::: |::: :::: ::: 
--.,   i        i .   •• ::.:;::* .! :.;•!:: ' : 

',   i/i      :      :      :   ... :•- i \ : ;;:.i::; : 
r>""-V; "   ;.. -.!.:. •••    I. 

— 
• .     j 

T\ 
- : 

::: i 
u r*rr .        | : •; 

1 
: •; ! 

;.  3.     !...'.      !   ö- •y : :::::: 

i. : i••. ;:: ' •\l :.2..br-,!..©.: 
!-c:iiir- : ::::(::: 

ixij-: f :     i : i :i::|lil •• I- • - . 1 ' : 

r^_i?_ N 
:::.,.::..::: 

::::;- 
• —4- 

: 
.    ; 

• ': 

:::: ::=• :S mT* I^M*1 - H, s 

rvi 

cn 

cO 

(D 

iO 

•n 

C\J 

O) 00 r^-. IS LD rn ou 



H..r.v 



NACA   TN 

O       "     I 

•l.Zf <C1   *   *=>JT =   T ) 
rig. 2i 

: oz--n 
in 

.^ 

o 

4--, 
z:i=!AJ 

V\*w 

f ~^>W! 

t7l=lA| 

-"-,"."*/?—r" 
;€'I=W 

ro 

. <M 

-.j£ztt Z\--n 
-/^-.i-.i- 

.'?T 

1                      • ' 1   , • I=IA| 

 r-^-brO'l •-W- _p. 

] .        f                       ' ' 
• 1 '     'fa         i ; 

''•••'n~A       ' 

9'=W 

o 

en 

oO 

r^ 

'                 _L I ' = W .... 

I 

.,,......     , 

9"=M 

—-  . •••-/--I-. 1 ..;.      , 
I  ,    '   C /'  , |    S" = W 

•' 1' / If •• 

_/. .!„ J_ l_     __ 

old 

u   .( 

ns?ajr 

* (\J 

O 
tß 

> 

--.iD 

ro 

CM 

O 



KACA T»  No.   932 '(«ZS/OT   -   IDOtq   T) Tli.   ZZ 

Q W CO 

°-   ,° -^3" - °!l°y PnP0jd *HsuaO ajnssaM 
CO 

J L 
in 

J L 
rg ö o 







I 
TITLE:   The Numerical Solution of Compressible Fluid Flow Problems 

AUTHORS): Emmons, H. W. - x-   •' 
ORIGINATING AGENCY: National Advisory Committee for Aeronautics, Washington, D. C. 

ß¥0» 8051 

(None) 
C-». AC3CT SO. 

TN-932 uv 
May '44 

DOC OAS*. 
Restr. 

COUMTOT 

U.S. Eng. graphs 
ABSTRACT: 

Numerical methods have been developed for obtaining steady, adiabatlc flow field 
of frictlonless, perfect gas about arbitrary two-dimensional bodies.  Solutions 
include subsonic and supersonic velocity regions and transition compression shocks. 
Rotational motion and entropy changes following shocks are taken into account. 
Extensive use is made of relaxation method.   Methods can be applied directly to 
wind-tunnel and free air tests of arbitrary airfoil shapes at subsonic speeds. 

DISTRIBUTION:  Request copies of this report only from Originating Agency 
DIVISION: Aerodynamics (2> ^ 
SECTION:  Fluid Mechanics and Aerodynamic 
ATI SHEET NO.:    R-2-9 -43 fTheorv (Q) 

SUBJECT HEADINGS: Flow around bodies (40450); Gas 
dynamics (44000) 

I- 
Air fctatcriot Command 

U.S. Air Forco 
AC2 YBCKXXAB. BKffiOX 

RESTRICTED 

Wrioht-PattoRten Air Forco Qato 
Dayton, Ohio 



ü:> MM '.•cation wi'/jeliee 
>:: (;'.:>:. r.ö«.'j '.a — -   •-- 

A; "TS 8: 

B.V • :- 
SÜJjalura am', 2/:::. 

Date _ uPß 2 9 1949 


